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Linear Isotherm for Compressed Molten Alkali Metals
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Molten alkali metals are shown to be in the domain of the newly developed
linear regularity that is valid for pure compressed liquids and liquid mixtures.
It holds in the range of melting to boiling temperature and shows deviations as
the critical temperature is approached. The agreement with experimental data is
better than 1.4% when it is used to predict the density of molten Li, Na, K, Rb,
and Cs metals. A reasonable conformity with the ISM statistical mechanical
equation of state is manifested.
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1. INTRODUCTION

The recently developed linear isotherm regularity (LIR) for dense fluids is
attractive for both practical purposes and for theoretical investigations
[1,2]. This feature may be considered similar to that of the other thermo-
dynamic regularities such as, (i) pressure versus temperature at constant
density p [3], (ii) linearity of a Clausius—Clapeyron plot [4], (iii) linearity
of rectilinear density diameter [5], and (iv) the common bulk modulus
point for compressed liquids [6-8], to mention a few.

The LIR equation of state suggests that (Z— 1) v* versus p? is linear
for a dense fluid and valid for atomic, polar, nonpolar molecular systems,
liquid mixtures [2], and quantum fluids, where Z=p/pkT is the com-
pressibility factor, v is the molar volume of fluid, and p = 1/v is the molar
density [ 1, 2]. The range of applicability for densities p is larger than the
Boyle density pg, valid up to the freezing line for liquids, and up to twice
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pp for supercritical fluids. The LIR linear parameters, the intercept, and the
slope depend on the temperature and are related to the intermolecular
repulsive and attractive forces. At the intermediate intermolecular separa-
tion the attractive and repulsive forces are balanced, leading to the feature
of linearity. It is valid for temperatures below the Boyle temperature Ty in
the liquid state and below twice Ty for supercritical fluids.

LIR applies to fluids consisting of a wide range of simple dipolar
molecules, besides atomic and molecular ones, motivating us to search for
its consequences in complex cases. The purpose of this paper is to explore
its range of validity for molten alkali metals, which are typical complex and
interesting liquid systems with important industrial applications.

Although alkali metals contain special properties that affect their ther-
modynamic behavior, it appears that they show regularity cases (i)—(iii),
mentioned above. The main difficulty in the theoretical treatment of alkali
metals is the difference in the nature of the intermolecular forces in the
liquid and the gaseous states due to special associative interactions leading
to polyatom formation in gaseous states [9, 10]. Moreover, two singlet-
and triplet-type intermolecular potentials arise from the spin coupling of
the two single-valence electrons of the associating partners, making the
investigation more complicated even in the ideal low-pressure limit.

In spite of the difficulties mentioned above, it has been shown that the
Ihm-Song-Mason (ISM) analytical equation of state is quite applicable to
molten alkali metals [11].

2. LINEAR ISOTHERM REGULARITY

The basic structure of the LIR equation of state is based on thermo-
dynamic arguments and reads, in its modified simple form, as [1]

(Z—1)v*=A + Bp? (1)

where Z, v, and p have their usual meanings. The intercept, 4, and the
slope, B, in Eq. (1) are two system-dependent constants, which vary with
temperature, and the thermodynamic equation of state plus inverse power
laws for the pair potential interaction have been used to show a tempera-
ture dependence in the form of

A=A,—A,/RT (2)
and

B=B,/RT (3)
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In Egs. (2) and (3), 4, and B, are constants related to the intermolecular
attraction and repulsion, respectively, while 4, is related to the nonideal
contribution to the thermal pressure.

It has been shown that Eq. (1) can be used to demonstrate the law of
corresponding states as Z=Z(T,, P,, Z.), where Z_ is the compressibility
factor at the critical point, and 7, and P, are the reduced temperature and
the reduced pressure, respectively [ 12]. Since Z_. depends on a particular
system, the universality could not be established perfectly. It has been
suggested that the establishment of a reference state ( at which the volume
shall be reduced) that is similar for interaction of two neighboring
molecules in all liquids improves the universality feature. In this regard
some progress has been made [12].

3. EQUATION OF STATE FOR COMPARISON

We compare and check the range of validity of the linear regularity
isotherm with the ISM analytical equation of state [13, 14]. The ISM
equation of state is based on statistical mechanics and is known for its
accuracy in the subcritical and supercritical regions including the com-
pressed liquid state [15]. The LIR version of the ISM equation of state
is

1/B,—a o
— 2=— 2
(Z=Dyv p<1+5bp+1—,1bp> “)

where B,, a, and b are three temperature-dependent constants charac-
teristic for the particular system. Of the three constants, B,, the second
virial coefficient, has the central role that represents an effective inter-
molecular interaction, and o« scales for the softness of the repulsive forces
and is equal to the contribution of the repulsive side of the potential func-
tion to the second virial coefficient; b is an analogue of the van der Waals
covolume that is related to « by b =d(aT)/dT. The constants ¢ and A are
characteristics of a particular fluid, but § is only a small correction for
some secondary effects of the attractive forces and can be taken to be equal
to 0.222 for practical purposes. The constant 2 is equal to 0.454 for noble
gases and, in general, can be calculated by successive approximation with
the aid of Eq. (4) [14]. When the details of the pair potential function are
known, B,, «, and b can be calculated by integration [ 13]. Other methods,
which involve calculation of B, from correlations and the use of thermo-
dynamic functions as scaling parameters for the calculation of « and b, are
available [ 11, 16, 17].
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4. RESULTS FOR ALKALI METALS

In employing Eq. (1) for alkali metals, we first examine the linearity
feature by presenting their volumetric behavior at various temperatures.
Figures 1-5 show the results at three temperatures, 600, 1000, and 1600 K
for Li, Na, K, Rb, and Cs, respectively. It can be seen that over the entire
range of pressures, from 100 to 1000 atm, the variations are linear as in
other dense fluids. In the p-T plane, the isochores are straight lines.
Measurements [ 18-22] reproduce the p—v—T data within the experimental
error. Moreover, it is consistent with a hard-sphere equation of state
approach [23].

The results for the alkali metals (Li through Cs) including the slopes
and intercepts at various temperatures are shown in Table 1. Since both
(Z—1)v? and p? are subject to experimental uncertainties, we have also
reported the square of the linear correlation coefficient of the linear fit of
the experimental data to the Eq. (1). If the square of the linear correlation
coefficient, R?, is within 0.005 of unity, the fit is considered to be good
[24]. For all cases in Table I, the deviations of the calculated densities are
within 1.4 % of the experimental data. Since both 4 and B are temperature
dependent, we have tabulated the results for Cs as a typical metal of alkalis
at various temperatures. (See Table II.)
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Table I. The Reduced Intercept (A4) and Slope (B) of Eq. (1) at Three Temperatures for Li,
Na, K, Rb, and Cs*
T (K) 4 B R? 4p (bar) (Dev), (%)*
Li 600 —0.5721  0.0212 1.0000 100-1000 0.002 (0.004)
1000 —0.3756 0.0153 1.0000 100-1000 0.002 (0.003)
1600 —0.2831 0.0136 1.0000 100-1000 0.004 (0.007)
Na 600 —0.5548 0.0217 0.9998 100-1000 0.003 (0.004)
1000 —0.3546  0.0160 1.0001 100-1000 0.007 (0.02)
1600 —0.2794 0.0163 0.9990 100-1000 0.051 (0.06)
K 600 —0.5058 0.0201 1.0000 100-1000 0.006 (0.009)
1000 —0.3146 0.0146 0.9999 100-1000 0.032 (0.05)
1600 —0.2536 0.0155 0.9969 100-1000 0.234 (0.39)
Rb 600 —0.7184 0.0432 0.9997 100-1000 0.011 (0.017)
1000 —0.4477 0.03161 0.9995 100-1000 0.046 (0.072)
1600 —0.3584 0.03357 0.9959 100-1000 0.371 (0.68)
Cs 600 —0.6462 0.03855 1.0000 100-1000 0.017 (0.027)
1000 —04042  0.02842 0.9990 100-1000 0.083 (0.14)
1600 —0.3360 0.03156 0.9914 100-1000 0.701 (1.41)

“ Also listed are the square of the linear correlation coefficient (R?), the pressure range (4p),
and the average absolute percentage deviation of the calculated density [(Dev),].
® The data in parentheses are maximum deviations.

Table II. The Same as Table I but for Cs at Different Temperatures®

T (K) 4 B R? Ap (bar) (Dev), (%)*
400 —0.9379 0.0514 09997 50-600 0.033 (0.052)
500 —0.7454 0.0426 0.9998 50-600 0.027 (0.049)
600 —0.6283 0.0375 0.9993 50-600 0.037 (0.058)
700 —0.5477 0.0341 0.9993 50-600 0.028 (0.053)
800 —0.5015 0.0327 0.9987 50-600 0.068 (0.010)
900 —0.4654 0.0318 0.9979 50-600 0.085 (0.012)

1000 —0.4358 0.0312 0.9971 50-600 0.121 (0.170)

1100 —0.4104 0.0309 0.9962 50-600 0.160 (0.230)

1200 —0.3916 0.0310 0.9961 50600 0.183 (0.270)

1300 ~03781 0.0315 0.9956 50600 0.230 (0.330)

1400 —0.3700 0.0326 0.9961 50-600 0.260 (0.400)

1500 —0.3680 0.0343 0.9943 50-600 0.381 (0.560)

1600 —0.3743 0.0373 09916 50-600 0.573 (0.970)

¢ Updated data from Ref. 27.
® The data in parentheses are maximum deviations.
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Both the intercept, 4, and the slope, B, have been predicted to be
linear in 1/T. This feature is well applied to alkali metals, as shown in
Fig. 6, typically for Cs.

The characteristic of the regularity that has been worked out theoreti-
cally for nonmetallic fluids is the temperature dependency of 4 and B. This
observation applies also in the case of the alkali metals as can be seen from
the results for Cs shown in Table II; the variation of 4 with temperature
is similar to the variation of the second virial coefficient. (See Fig. 7.)

Equation (4) demonstrates the LIR version of the ISM equation of
state. Obviously, the right-hand side of this equation is not a function
of p?, but it conforms to the LIR equation of state if it is plotted against
(p/pw)’, and hence, one expects an appreciable linear range. The confor-
mities to the LIR are shown in Figs. 8-12 for Li, Na, K, Rb, and Cs,
respectively.

5. DISCUSSION

Data for the compressibility factor of molten alkali metals are more
limited than for other fluids, but the available data in the pressure range
of 50-600 atm nicely demonstrate the linearity, as has already been
demonstrated for other fluids. The coefficients 4 and B for alkali metals
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vary with temperature as they do for other fluids. However, their values for
the alkali metals are smaller by about an order of magnitude.

It has been shown that 4 (for nonmetallic liquids) varies with tem-
perature as much as B,, the second virial coefficient, does [1]. In the case
of alkali metals, this similarity needs further refinements. We recall that the
second virial coefficient data for alkali metals are not available at high tem-
peratures, so that the Boyle temperature cannot be determined in practice.
In other words, a plot of B, versus temperature does not cross the zero
line, and thus one practical way for determining the Boyle temperature is
by estimation, such as calculating B, as a function of temperature from a
potential function. A method for the calculation of B, as a function of
temperature for alkali metals that includes BY" and B> from singlet [ super-
script (1)]- and triplet [superscript (3)]-type potential interactions, respec-
tively, has been reported in the literature {25]. Of the two model potential
functions used in these calculations, the Morse function has been reported
as the more reliable. As a result of this calculation, BS" and B vary with
temperature in the opposite manner; at high temperatures, the variations of
B(" go through a maximum in the negative region, without crossing the
zero line. When the statistical weighting of singlet and triplet states is
applied, the overall variation of B, with temperature looks just as normal
as that for other fluids [25]. Thermodynamically, however, the singlet state
of the alkali metals at high temperatures is the predominant state, whereas
the triplet state is the lesser one due to its repulsive nature. Therefore, at
high temperatures one may expect B, to be dominated energetically by the
singlet behavior.

The above arguments, considering pair interactions, are valid for the
vapor state. However, in this work we have used the LIR for the liquid
state. We have observed that (Fig. 7) the A values vary with temperature
as the B, values but go through a maximum in the negative region without
crossing the zero line. At present, it is not possible to relate 4 to any
fundamental physical property directly. However, as the temperature
increases, an intrinsic transition in the intermolecular forces of the liquid
alkali metals occurs, leading to polyatom formation. Therefore, as the tem-
perature increases, a basic assumption in the derivation of the LIR equa-
tion of state (e.g., the nearest-neighboring structure of the liquid state)
becomes invalid [12]. Such a consideration may be used to attribute the
special behavior of the variations in A4 values in the negative region to the
intrinsic transition in the intermolecular forces and, accordingly, to the
threshold state for the two types of singlet and triplet interactions.
Although the LIR shows some deviations from linearity at high tempera-
tures (see Table II), the deviations being consistent, one may still draw a
reliable conclusion about the physical role of intercept, 4, as done above.
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For practical purposes, the Boyle temperature and the volume have
been adopted in the application of the ISM equation of state [11]. The
Boyle temperature and the volume of alkali metals have been determined in
this work from a correlation in which the second virial coefficient is
expressed as a polynomial in 4H,, the heat of vaporization. The density at
the freezing temperature plus the 4H, are the scaling constants (in the
correlation) for the calculation of « and b in Eq. (4). The alkali metals, with
particular properties mentioned previously, are not expected to follow the
same correlation as a normal fluid, and therefore, such a procedure
produced only the so-called quasi-second virial coefficient [ 26 ]. However, it
has been shown that the quasi-second virial coefficients represent the physi-
cal properties in a real sense [26]. Thus, the above conclusion concerning
the 4 values compared to the B, values may be treated in a real sense.

With regard to the R? values for dense normal fluids, LIR is found to
be valid for temperatures up to twice Ty, well above the critical tem-
perature T, [ 1]. For the molten alkali metals, however (see Tables I and
IT), this work reveals that LIR is valid up to the critical temperature, which
may be attributed to the intrinsic changes in the nature of intermolecular
forces as the critical temperature is approached.

Two more points require explanation: first, the lack of experimental
data does not allow us to determine the range of linearity of the LIR ver-
sion of the ISM equation of state; and second, as the isotherms approach
the critical temperature the deviations of the R? values from unity gets
larger, indicating that LIR might become nonanalytic at the critical point.

6. CONCLUSIONS

We have shown that (Z — 1) v? varies linearly with p? for molten alkali
metals. The slope and the intercept of the present regularity are linear in
1/T; the regularities are consistent with the ISM equation of state, which
is shown to be accurate for compressed fluids over a wide range of tempera-
tures and pressures. We now have a new useful way of plotting data on the
isotherms of liquid alkali metals. Moreover, the temperature dependences
of the linear isotherm parameters for the alkalis are known. Also, we have
found that 4 is an important parameter that may be used to assess the
range of effective intrinsic intermolecular forces in molten alkali metals.
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